Abstract

Src, a nonreceptor tyrosine kinase, was the first oncogene identified from an oncogenic virus. Mechanistic studies of Src-induced transformations aid in understanding the pathologic processes underlying tumorigenesis and may provide new strategies for cancer therapy. Although several pathways and protein modifications are reportedly involved in Src-induced transformation, the detailed mechanisms of their regulation remain unclear. Protein methylation is an important PTM that is widely involved in cellular physiology. In this study, we determined if protein methylation was involved in Src activation and which methylated proteins were associated with this activity. Using in vitro methylation and 2-DE analysis of viral Src (v-Src)-transformed rat kidney epithelial cells (RK3E), several known and novel methylated proteins were identified based on their changes in methylation signal intensity upon transformation. Among these, elongation factor 2 (EF-2), heterogeneous nuclear ribonucleoprotein K (hnRNP K), and β-tubulin protein expressions remained unchanged, indicating that their altered methylation levels were due to Src activation. In addition, the altered expression of β-actin, vimentin, and protein phosphatase 2, catalytic subunit (PPP2C) as well as protein phosphatase 2, catalytic subunit methylation were also confirmed in RK3E cells transformed with a human oncogenic Src mutant (Src531), supporting their association with Src-induced transformation in human cancer. Together, we showed putative involvement of protein methylation in Src activation and our identification of methylated proteins provides important targets for extensively studying Src-induced transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.