Abstract
무더운 날씨가 지속됨으로서 고랭지배추의 생장 및 결구가 지연되고 있는 강원도 정선군 질운산(새빗재)의 600 m와 900 m의 배추를 사용하여 무기성분 및 단백질 발현패턴을 분석하였다. 식물체 무기성분에서는 생장에 관련된 질소 및 인산의 부족현상과 결구에 관련된 칼슘이 부족하였다. 단백체 분석은 2차원 전기영동에 의해 전체 126개의 단백질이 분리되었고 그중 48개의 단백질이 고도에 따라 변화하는 양상을 보여주었다. 이 중에서 30개의 단백질 서열이 결정되었는데, 해발 900 m에서 단백질 발현이 증가한 14개 중에서 oxygen- evolving proteins, rubisco activase and ATPase 등이, 해발 600 m에서는 glutathione S-transferase (1, 28 kD cold induced- and 24kD auxin-binding proteins) and salt-stress induced protein 등 16개의 단백질 발현이 증가하였다. 이러한 단백질은 식물체 손상에 대한 보호기작을 가진 스트레스관련 단백질로 가뭄, 온도상승, 밤낮의 온도차 등의 반복으로 복합적이며 동시 다발적으로 나타나는 고온장해 현상으로 사료된다. High temperature stresses have caused growth inhibition and delayed heading in highland cultivation Chinese cabbage during summer in Korea. We have studied high temperature stress responses in the terms of changes of inorganic components and proteins by proteomic analyses. Insufficiencies of nitrogen and phosphorus have affected growth rate and calcium deficiency has caused blunted heading. Proteins extracted from Brassica seedling grown at the altitude of 600m and 900m in the Mount Jilun were extracted and analysed by 2-dimentional polyacrylamide gel electrophoresis. Profiles of protein expression was then analyzed by 2-dimentional gel analyses. Protein spots showing different expression level were picked using the spot handling workstation and subjected to MALDI-TOF MS. Total 48 protein spots were analyzed by MALDI-TOF MS and 30 proteins spots out of 48 were identified by peptide mass fingerprinting analyses. Fourteen proteins were up-regulated in extracts from the altitude of 900m and they were identified as oxygen-evolving proteins, rubisco activase and ATPase etc. Sixteen proteins were up-regulated in extracts from the altitude of 600m and they were identified as glutathione S-transferase(1, 28kD cold induced- and 24 kD auxin-binding proteins) and salt-stress induced protein etc. These stress-induced proteins were related to the mediated protective mechanism against oxidative damage during various stresses. The results indicated that physiological phenomenon in response to high temperature stresses might be resulted by complex and multiple array of responses with drought, heat, oxidative, salt, and cold by high temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.