Abstract

Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker identification, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PCLS were incubated with acetaminophen (APAP), 3-acetamidophenol, diclofenac and lipopolysaccharide for 24-48 h. PCLS medium from all species treated with APAP demonstrated similar changes in protein profiles, as previously found in mouse urine after APAP-induced liver injury, including the same key proteins: superoxide dismutase 1, carbonic anhydrase 3 and calmodulin. Further analysis showed that the concentration of hepcidin, a hepatic iron-regulating hormone peptide, was reduced in PCLS medium after APAP treatment, resembling the decreased mouse plasma concentrations of hepcidin observed after APAP treatment. Interestingly, comparable results were obtained after 3-acetamidophenol incubation in rat and human, but not mouse PCLS. Incubation with diclofenac, but not with lipopolysaccharide, resulted in the same toxicity parameters as observed for APAP, albeit to a lesser extent. In conclusion, proteomics can be applied to identify potential translational biomarkers using the PCLS system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.