Abstract

Together with fungi, saprophytic bacteria are central to the decomposition and recycling of biomass in forest environments. The Bacteroidetes phylum is abundant in diverse habitats, and several species have been shown to be able to deconstruct a wide variety of complex carbohydrates. The genus Chitinophaga is often enriched in hotspots of plant and microbial biomass degradation. We present a proteomic assessment of the ability of Chitinophaga pinensis to grow on and degrade mannan polysaccharides, using an agarose plate-based method of protein collection to minimise contamination with exopolysaccharides and proteins from lysed cells, and to reflect the realistic setting of growth on a solid surface. We show that select Polysaccharide Utilisation Loci (PULs) are expressed in different growth conditions, and identify enzymes that may be involved in mannan degradation. By comparing proteomic and enzymatic profiles, we show evidence for the induced expression of enzymes and PULs in cells grown on mannan polysaccharides compared with cells grown on glucose. In addition, we show that the secretion of putative biomass-degrading enzymes during growth on glucose comprises a system for nutrient scavenging, which employs constitutively produced enzymes. Significance of this studyChitinophaga pinensis belongs to a bacterial genus which is prominent in microbial communities in agricultural and forest environments, where plant and fungal biomass is intensively degraded. Such degradation is hugely significant in the recycling of carbon in the natural environment, and the enzymes responsible are of biotechnological relevance in emerging technologies involving the deconstruction of plant cell wall material. The bacterium has a comparatively large genome, which includes many uncharacterised carbohydrate-active enzymes. We present the first proteomic assessment of the biomass-degrading machinery of this species, focusing on mannan, an abundant plant cell wall hemicellulose. Our findings include the identification of several novel enzymes, which are promising targets for future biochemical characterisation. In addition, the data indicate the expression of specific Polysaccharide Utilisation Loci, induced in the presence of different growth substrates. We also highlight how a constitutive secretion of enzymes which deconstruct microbial biomass likely forms part of a nutrient scavenging process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.