Abstract

Data are presented on the identification and partial characterisation of proteins comprising the chlamydial outer membrane complex (COMC) fraction of Chlamydia abortus (C. abortus)-the aetiological agent of ovine enzootic abortion. Inoculation with the COMC fraction is known to be highly effective in protecting sheep against experimental challenge and its constituent proteins are therefore of interest as potential vaccine candidates. Sodium N-lauroylsarcosine (sarkosyl) insoluble COMC proteins resolved by SDS-PAGE were interrogated by mass spectrometry using combined rapid monolithic column liquid chromatography and fast MS/MS scanning. Downstream database mining of processed tandem MS data revealed the presence of 67 proteins in total, including putative membrane associated proteins (n = 36), such as porins, polymorphic membrane proteins (Pmps), chaperonins and hypothetical membrane proteins, in addition to others (n = 22) that appear more likely to have originated from other subcellular compartments. Electrophoretic mobility data combined with detailed amino acid sequence information derived from secondary fragmentation spectra for 8 Pmps enabled peptides originating from protein cleavage fragments to be mapped to corresponding regions of parent precursor molecules yielding preliminary evidence in support of endogenous post-translational processing of outer membrane proteins in C. abortus. The data presented here will facilitate a deeper understanding of the pathogenesis of C. abortus infection and represent an important step towards the elucidation of the mechanisms of immunoprotection against C. abortus infection and the identification of potential target vaccine candidate antigens.

Highlights

  • Chlamydiae are Gram-negative obligate intracellular bacteria that are responsible for a broad range of transmissible diseases affecting both humans and animals [1]

  • Highly similar in principle, the primary difference between SOSPA and regular Gel-LC is the substitution of a traditional 75μm internal diameter (ID) C18 bead matrix reversed phase (RP) column for a 200μm ID PS-DVB RP monolithic column

  • This study has demonstrated for the first time expression at the protein level of all translatable polymorphic membrane proteins (Pmps) in C. abortus, with the exception of Pmp11G

Read more

Summary

Introduction

Chlamydiae are Gram-negative obligate intracellular bacteria that are responsible for a broad range of transmissible diseases affecting both humans and animals [1]. C. trachomatis is the most common cause of venereal infections [2] and trachoma [3], while C. pneumoniae is responsible for cases of atypical community-acquired pneumonia [4]. Other chlamydial species cause disease in animals, including C. psittaci, which is responsible for psittacosis (aka parrot fever and ornithosis) in psittacine birds and domestic poultry, as well as zoonotic respiratory infections in humans [5]. After 48–72 hours (depending on chlamydial species) the RB recondenses back into the infectious EB morphotype and are released to invade neighbouring cells [1]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.