Abstract

Thyroid cancer has emerged as the most rapidly proliferating solid neoplasm. In this study, we included a cohort of patients who underwent sonographic assessment and surgical intervention at the Sir Run Run Shaw Hospital, associated with the School of Medicine at Zhejiang University, spanning from January 2019 to June 2020. Stratification of cases was based on a combination of preoperative ultrasonographic evaluations and postoperative histopathological diagnoses, resulting in three distinct groups: high-risk papillary thyroid carcinoma (PTC) labeled as C1, low-risk PTC designated as C2, and a control group (N) composed of benign thyroid tissue adjacent to the carcinoma. Proteomic and phosphoproteomic analyses were conducted on PTC specimens. The comparative assessment revealed that proteins up-regulated in the C1/N and C2/N groups were predominantly involved in functions such as amino acid binding, binding of phosphorylated compounds, and serine protease activity. Notably, proteins like NADH dehydrogenase, ATP synthase, oxidoreductases, and iron ion channels were significantly elevated in the C1 versus C2 comparative group. Through meticulous analysis of differential expression multiples, statistical significance, and involvement in metabolic pathways, this study identified eight potential biomarkers pertinent to PTC metastasis diagnostics, encompassing phosphorylated myosin 10, phosphorylated proline-directed protein kinase, leucine tRNA synthetase, 2-oxo-isovalerate dehydrogenase, succinic semialdehyde dehydrogenase, ADP/ATPtranslocase, pyruvate carboxylase, and fibrinogen. Therapeutic assays employing metformin, an AMP-activated protein kinase (AMPK) activator, alongside the phosphorylation-specific inhibitor ML-7 targeting Myosin10, demonstrated attenuated cellular proliferation, migration, and invasion capabilities in thyroid cancer cells, accompanied by a reduction in amino acid pools. Cellular colocalization and interaction studies elucidated that AMPK activation imposes an inhibitory influence on Myosin10 levels. The findings of this research corroborate the utility of proteomic and phosphoproteomic platforms in the identification of metastatic markers for PTC and suggest that modulation of AMPK activity, coupled with the inhibition of Myosin10 phosphorylation, may forge novel therapeutic avenues in the management of thyroid carcinoma. SignificanceThe significance of our research lies in its potential to transform the current understanding and management of thyroid papillary carcinoma (PTC), particularly in its metastatic form. By integrating both proteomic and phosphoproteomic analyses, our study not only sheds light on the molecular alterations associated with PTC but also identifies eight novel biomarkers that could serve as indicators of metastatic potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call