Abstract

BackgroundAstaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable).ResultsA total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis.Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions.ConclusionsThe use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic enzymes of the tricarboxylic acid and glyoxylate cycles. The high metabolite level generated in this pathway could increase the cellular respiration rate, producing reactive oxygen species, which induces carotenogenesis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1484-6) contains supplementary material, which is available to authorized users.

Highlights

  • Astaxanthin is a potent antioxidant with increasing biotechnological interest

  • Growth and carotenoid production in glucose- and succinate- supplemented media In a previous study, we determined that carotenogenesis in X. dendrorhous is favored when the yeast is cultured in succinate than in other non-fermentable carbon sources, such as xylose or sodium acetate [18]

  • To compare the effect of fermentable and non-fermentable carbon sources, the X. dendrorhous UCD 67–385 strain was cultured in minimal medium (MM) supplemented with 2% of glucose or succinate

Read more

Summary

Introduction

Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. Astaxanthin is a carotenoid with high commercial and biotechnological interest, principally reflecting the antioxidant properties of this organic molecule [1,2]. This pigment has been used in aquaculture, food, and cosmetics, and has been evaluated in the pharmaceutical industry [1,2]. Phytoene is the first carotenoid produced, from the condensation of two molecules of GGPP, a process catalyzed through the bifunctional enzyme phytoene-lycopene synthase [9]. Β-carotene is oxidized at both ends through the cytochrome P450 enzyme, astaxanthin synthase [11] This reaction requires the accessory activity of cytochrome P450 reductase (CPR) as an electron donor [12]. Astaxanthin biosynthesis has been elucidated at genetic level, the complex regulatory mechanisms controlling this process remain unknown

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.