Abstract
It was previously demonstrated that the WNT/β-catenin pathway is present and active in platelets and established that the canonical WNT ligand, WNT-3a, suppresses platelet adhesion and activation. In nucleated cells, β-catenin, the key downstream effector of this pathway, is a dual function protein, regulating the coordination of gene transcription and cell-cell adhesion. The specific role of β-catenin in the anucleate platelet however remains elusive. Here, a label-free quantitative proteomic analysis of β-catenin immunoprecipitates from human platelets is performed and nine co-immunoprecipitating proteins are identified. Three of the co-immunoprecipitating proteins (α-catenin-1, cadherin-6, and β-catenin-interacting protein 1) are common to both resting and activated conditions. Bioinformatics analysis of proteomics data reveal a strong association of the dataset with both cadherin adherens junctions and regulators of WNT signaling. It is then verified that platelet β-catenin and cadherin-6 interact and that this interaction is regulated by the activation state of the platelet. Taken together, this proteomics study suggests a novel role for β-catenin in human platelets where it interacts with platelet cadherins and associated junctional proteins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have