Abstract

Taenia solium cysts were collected from pig skeletal muscle and analyzed via a shotgun proteomic approach to identify known proteins in the cyst fluid and to explore host-parasite interactions. Cyst fluid was aseptically collected and analyzed with shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene alignment and annotation were performed using Blast2GO software followed by gene ontology analysis of the annotated proteins. The pathways were further analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), and a protein-protein interaction (PPI) network map was generated using STRING software. A total of 158 known proteins were identified, most of which were low-molecular-mass proteins. These proteins were mainly involved in cellular and metabolic processes, and their molecular functions were predominantly related to catalytic activity and binding functions. The pathway enrichment analysis revealed that the known proteins were mainly enriched in the PI3K-Akt and glycolysis/gluconeogenesis signaling pathways. The nodes in the PPI network mainly consisted of enzymes involved in sugar metabolism. The cyst fluid proteins screened in this study may play important roles in the interaction between the cysticerci and the host. The shotgun LC-MS/MS, gene ontology, KEGG, and PPI network map data will be used to identify and analyze the cyst fluid proteome of cysticerci, which will provide a basis for further exploration of the invasion and activities of T. solium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.