Abstract

To investigate the mechanisms of the defense system and antioxidant defense system during chicken embryo development, protein profiling of liver tissues in chicken embryo at Day 16 and Day 20 was conducted. TMT was used to analyze the liver tissues proteomes with significantly different activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in chicken embryo. PRM was operated to validate the target differentially abundant proteins (DAPs) using the same samples. The result showed a total of 34 DAPs were identified. Among these, 9 were upregulated and 25 were downregulated. The screened DAPs strictly related to regulation of oxidoreductase activity (DDO and GAS2L1), response to stress (ERAD2 and SAA), immune system process (GAL3 and PDCD4), and lipid regulation and metabolism (ETNPPL, APOV1, LIPM, and APOA4). These analyses indicated that the antioxidant enzyme activity of chicken embryo is regulated through different pathways. Correlation analysis revealed a linear relationship between mRNA and protein expression and 12 genes (ORM1, C8B, KPNA2, CA4, C1S, SULT1B, ETNPPL, ERCC6L, DDO, SERPINF1, VAT1L, and APOA4) were detected to be differently expressed both at mRNA and protein levels. In consequence, these findings are an important resource that can be used in future studies of antioxidant mechanisms in chicken embryo. Biological significanceThe genetic mechanisms of antioxidant activity are still unclear in chicken embryo. In the article, the combined transcriptomic and proteomic analysis is used to further explore potential signaling pathways and differentially abundant proteins related to antioxidant activity. These findings will facilitate a better understanding of the mechanism and these DAPs can be further investigated as candidate markers to predict the activity of antioxidant enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call