Abstract

BackgroundStrain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Although the efficiency of B. diazoefficiens inoculant strains is well recognized, few data on their protein expression are available.ResultsWe provided a two-dimensional proteomic reference map of CPAC 7 obtained under free-living conditions, with the successful identification of 115 spots, representing 95 different proteins. The results highlighted the expression of molecular determinants potentially related to symbiosis establishment (e.g. inositol monophosphatase, IMPase), fixation of atmospheric nitrogen (N2) (e.g. NifH) and defenses against stresses (e.g. chaperones). By using bioinformatic tools, it was possible to attribute probable functions to ten hypothetical proteins. For another ten proteins classified as “NO related COG” group, we analyzed by RT-qPCR the relative expression of their coding-genes in response to the nodulation-gene inducer genistein. Six of these genes were up-regulated, including blr0227, which may be related to polyhydroxybutyrate (PHB) biosynthesis and competitiveness for nodulation.ConclusionsThe proteomic map contributed to the identification of several proteins of B. diazoefficiens under free-living conditions and our approach—combining bioinformatics and gene-expression assays—resulted in new information about unknown genes that might play important roles in the establishment of the symbiosis with soybean.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-643) contains supplementary material, which is available to authorized users.

Highlights

  • Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries

  • We found one inositol monophosphatase (IMPase) (Table 1); this protein has been related with the regulation of EPS production, which, when mutated in Rhizobium leguminosarum bv. trifolii, resulted in defective-EPS production and a non-N2-fixing phenotype [37,38,39]

  • We identified the elongation factor Tu (EFTu), which acts as elicitor and, in general, is conserved across multiple groups of bacteria, allowing plants to perceive and respond to an epitope common to many bacteria [42,43]

Read more

Summary

Introduction

Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Regarding the concept of agriculture sustainability, BNF contributes to the improvement of food production without cultivation of new lands, to lowering input costs for the farmers and to mitigating environmental degradation. Such benefits occur when BNF replaces chemical N-fertilizers, which. An important example is the contribution of BNF to soybean cropping in Brazil, associated with application to the seeds at sowing of inoculants containing elite strains of Bradyrhizobium, including CPAC 15 (=SEMIA 5079) and CPAC 7 (=SEMIA 5080) [7,8]. The combination of these strains can fulfill much of the crop’s N needs, resulting in estimated savings of about US $15 billion in N-fertilizers per cropping season [9]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.