Abstract

Aubipyc is an organogold(III) compound endowed with encouraging anti-proliferative properties in vitro that is being evaluated pre-clinically as a prospective anticancer agent. A classical proteomic approach is exploited here to elucidate the mechanisms of its biological actions in A2780 human ovarian cancer cells. Based on 2-D gel electrophoresis separation and subsequent mass spectrometry identification, a considerable number of differentially expressed proteins were highlighted in A2780 cancer cells treated with Aubipyc. Bioinformatic analysis of the groups of up-regulated and down-regulated proteins pointed out that Aubipyc primarily perturbs mitochondrial processes and the glycolytic pathway. Notably, some major alterations in the glycolytic pathway were validated through Western blot and metabolic investigations. This is the first proteomic analysis regarding Aubipyc cytotoxicity in A2780/S ovarian cancer cell line. Aubipyc is a promising gold(III) compound which manifests an appreciable cytotoxicity toward the cell line A2780, being able to overcome resistance to platinum. The proteomic study revealed for Aubipyc different cellular alterations with respect to cisplatin as well as to other gold compound such as auranofin. Remarkably, the bioinformatic analysis of proteomic data pointed out that Aubipyc treatment affected, directly or indirectly, several glycolytic enzymes. These data suggest a new mechanism of action for this gold drug and might have an impact on the use of gold-based drug in cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.