Abstract
Lactoylglutathione lyase (GLO1), a ubiquitously expressed methylglyoxal (MG) detoxification enzyme, is implicated in the progression of various human malignant diseases. However, the role of GLO1 in the development or progression of murine fibrosarcoma is still unclear. We performed proteomic analysis to identify differences in the intracellular proteins of the regressive tumor cell line QR-32 and the inflammatory cell-promoting progressive tumor cell line QRsP-11 of murine fibrosarcoma by 2DE combined with MS. Seven upregulated proteins were identified in QRsP-11 compared to QR-32 cells, namely, GLO1, annexin A1, adenylate kinase isoenzyme 1, transcription factor BTF3, myosin light polypeptide 6, low molecular weight phosphotyrosine protein phosphatase and nucleoside diphosphate kinase B. Heat shock protein beta-1 (HspB1), a methylglyoxal-adducted protein, is concomitantly over-expressed in QRsP-11 as compared to QR-32 cells. We also found out that GLO1 is translocated into the nucleus to a higher extent in QRsP-11 compared to QR-32 cells, which can be reversed by using a MEK inhibitor (U0126). Moreover, U0126 and GLO1 siRNA can inhibit cell proliferation and migration in QRsP-11 cells. Our data suggest that overexpression and nuclear translocation of GLO1 might be associated with tumor progression in murine fibrosarcoma.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have