Abstract

Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry, the proteome of a metabolically engineered succinic acid-overproducing bacterium, Mannheimia succiniciproducens LPK7, was examined and compared with that of its wild type strain, MBEL55E, to elucidate the physiological and metabolic changes responsible for succinic acid overproduction and cell growth. Comparative proteomic studies clearly showed that the expression levels of enzymes involved in the ATP formation and consumption (AtpD, Ppa, SerS, ProS, Pnp, PotD, MalK, RbsB, and TbpA), pyruvate metabolism (AceF and Lpd), glycolysis (GapA, Pgk, Fba, and TpiA), and amino acid biosynthesis (Asd, DapA, DapD, Gdh, ArgD, and ArgG) varied significantly in the LPK7 strain compared with those in the MBEL55E strain. Based on the comparative proteome profiling, the formation of pyruvic acid, a newly formed byproduct in the engineered LPK7 strain, could be reduced by adding into the culture medium pantothenate and L: -cysteine, which serve as precursors of CoA biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.