Abstract

Leaf starch synthesized during the day for transient storage of photoassimilated carbon is degraded the following night to support respiration and growth in plants. Maltose is a major product of starch degradation, and is exported to the cytosol through the maltose transporter (MEX1). The Arabidopsis mex1 mutant displays growth retardation and an exceptional chlorotic phenotype that is not observed in other mutants demonstrating defective starch synthesis or degradation. Consistent with the chlorotic phenotype, proteomic analysis revealed degeneration of the photosynthetic machinery in mex1, and the down-regulation of essential components for photosynthesis was also observed. The chlorosis observed in mex1 occurs during vegetative growth period under normal growth conditions, which is distinct from general senescence-induced chlorosis. No up-regulation of senescence-related genes was found in the proteomic analysis of mex1, suggesting that the chlorotic process occurring in mex1 is likely distinct from senescence-dependent processes. On the other hand, cellular processes needed to survive stress situations caused by the blocking of maltose export are induced in mex1 by up-regulation of stress-related proteins, such as a germin-like protein and glutathione S-transferase. The increased abundance of heat shock protein 93-V participating in chloroplast biogenesis and rubisco activase, a regulatory protein of photosynthesis, likely reflects an attempt by the mex1 mutant to maintain chloroplast function to survive stress conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call