Abstract
Predicting the three dimensional native state structure of a protein from its primary sequence is an unsolved grand challenge in molecular biology. Two main computational approaches have evolved to obtain the structure from the protein sequence - ab initio/de novo methods and template-based modeling - both of which typically generate multiple possible native state structures. Model quality assessment programs (MQAP) validate these predicted structures in order to identify the correct native state structure. Here, we propose a MQAP for assessing the quality of protein structures based on the distances of consecutive Cα atoms. We hypothesize that the root-mean-square deviation of the distance of consecutive Cα (RDCC) atoms from the ideal value of 3.8 Å, derived from a statistical analysis of high quality protein structures (top100H database), is minimized in native structures. Based on tests with the top100H set, we propose a RDCC cutoff value of 0.012 Å, above which a structure can be filtered out as a non-native structure. We applied the RDCC discriminator on decoy sets from the Decoys 'R' Us database to show that the native structures in all decoy sets tested have RDCC below the 0.012 Å cutoff. While most decoy sets were either indistinguishable using this discriminator or had very few violations, all the decoy structures in the fisa decoy set were discriminated by applying the RDCC criterion. This highlights the physical non-viability of the fisa decoy set, and possible issues in benchmarking other methods using this set. The source code and manual is made available at https://github.com/sanchak/mqap and permanently available on 10.5281/zenodo.7134.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.