Abstract

Estimating the accuracy of protein structural models is a critical task in protein bioinformatics. The need for robust methods in the estimation of protein model accuracy (EMA) is prevalent in the field of protein structure prediction, where computationally-predicted structures need to be screened rapidly for the reliability of the positions predicted for each of their amino acid residues and their overall quality. Current methods proposed for EMA are either coupled tightly to existing protein structure prediction methods or evaluate protein structures without sufficiently leveraging the rich, geometric information available in such structures to guide accuracy estimation. In this work, we propose a geometric message passing neural network referred to as the geometry-complete perceptron network for protein structure EMA (GCPNet-EMA), where we demonstrate through rigorous computational benchmarks that GCPNet-EMA's accuracy estimations are 47% faster and more than 10% (6%) more correlated with ground-truth measures of per-residue (per-target) structural accuracy compared to baseline state-of-the-art methods for tertiary (multimer) structure EMA including AlphaFold 2. The source code and data for GCPNet-EMA are available on GitHub, and a public web server implementation is freely available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call