Abstract

An accurate estimation of the quality of protein model structures typifies as a cornerstone in protein structure prediction regimes. Despite the recent groundbreaking success in the field of protein structure prediction, there are certain prospects for the improvement in model quality estimation at multiple stages of protein structure prediction and thus, to further push the prediction accuracy. Here, a novel approach, named ProFitFun, for assessing the quality of protein models is proposed by harnessing the sequence and structural features of experimental protein structures in terms of the preferences of backbone dihedral angles and relative surface accessibility of their amino acid residues at the tripeptide level. The proposed approach leverages upon the backbone dihedral angle and surface accessibility preferences of the residues by accounting for its N-terminal and C-terminal neighbors in the protein structure. These preferences are used to evaluate protein structures through a machine learning approach and tested on an extensive dataset of diverse proteins. The approach was extensively validated on a large test dataset (n = 25005) of protein structures, comprising 23661 models of 82 non-homologous proteins and 1344 non-homologous experimental structures. In addition, an external dataset of 40000 models of 200 non-homologous proteins was also used for the validation of the proposed method. Both datasets were further used for benchmarking the proposed method with four different state-of-the-art methods for protein structure quality assessment. In the benchmarking, the proposed method outperformed some state-of-the-art methods in terms of Spearman's and Pearson's correlation coefficients, average GDT-TS loss, sum of z-scores and average absolute difference of predictions over corresponding observed values. The high accuracy of the proposed approach promises a potential use of the sequence and structural features in computational protein design. http://github.com/KYZ-LSB/ProTerS-FitFun. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.