Abstract
Plant nucleotide-binding domain leucine-rich-repeat receptor (NLR) confers disease resistance to various pathogens by recognizing effectors derived from the pathogen. Previous studies have shown that overexpression of the CC domain in several NLRs triggers cell death, implying that the CC domain plays an important role as a signaling module. However, how CC domain transduces immune signals remains largely unknown. A Potyvirus-resistant NLR protein, Pvr4, possesses a CC domain (CCPvr4 ) that induces cell death upon transient overexpression in Nicotiana benthamiana. In this study, loss-of-function mutants were generated by error-prone PCR-based random mutagenesis to understand the molecular mechanisms underlying CCPvr4 -mediated cell death. Cell biology and biochemical studies revealed that M16 and Q52 in the α1 and α2 helices, respectively, are crucial for protein stability, and mutation of these residues disrupts localization to the plasma membrane and oligomerization activity. The increase of the protein stability of these mutants by tagging a green fluorescent protein (GFP) variant led to restoration of cell death-inducing activity and plasma membrane localization. Another mutant, I7E in the very N-terminal region, lost cell death-inducing activity by weakening the interaction with plasma membrane H+ -ATPase compared to CCPvr4 , although the protein remained in the plasma membrane. Moreover, most of the mutated residues are on the outer surface of the funnel shape in the predicted pentameric CCPvr4 , implying that the disordered N-terminal region plays a crucial role in association with PMA as well as targeting to the plasma membrane. This work could provide insights into the molecular mechanisms of cell death induced by NLR immune receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.