Abstract
Protein secondary structure prediction (PSSP) is a fundamental task in protein science and computational biology, and it can be used to understand protein 3-dimensional (3-D) structures, further, to learn their biological functions. In the past decade, a large number of methods have been proposed for PSSP. In order to learn the latest progress of PSSP, this paper provides a survey on the development of this field. It first introduces the background and related knowledge of PSSP, including basic concepts, data sets, input data features and prediction accuracy assessment. Then, it reviews the recent algorithmic developments of PSSP, which mainly focus on the latest decade. Finally, it summarizes the corresponding tendencies and challenges in this field. This survey concludes that although various PSSP methods have been proposed, there still exist several further improvements or potential research directions. We hope that the presented guidelines will help nonspecialists and specialists to learn the critical progress in PSSP in recent years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.