Abstract

Surfaces with resistance to non-specific protein adsorption and a high capacity to bind plasminogen from plasma are developed for application as fibrinolytic surfaces in blood contact. A new method is reported for grafting poly(OEGMA-co-HEMA) copolymers on polyurethane surfaces. The OEGMA provides effective protein resistance due to the PEG side chains and the HEMA provides a high density of OH groups for attachment of lysine. Adsorption of fibrinogen from buffer and plasma to these surfaces is low, indicating significant protein resistance. Plasminogen binding from plasma is high, and clot dissolution on surfaces where plasminogen adsorbed from plasma is converted to plasmin is rapid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.