Abstract

Different kinase-dependent cell signaling pathways are known to play important roles in glia-mediated neuroprotection and reprogramming of Müller glia (MG) into Müller glia-derived progenitor cells (MGPCs) in the retina. However, very little is known about the phosphatases that regulate kinase-dependent signaling in MG. Using single-cell RNA-sequencing (scRNA-seq) databases, we investigated patterns of expression of Dual Specificity Phosphatases (DUSP1/6) and other protein phosphatases in normal and damaged chick retinas. We found that DUSP1, DUSP6, PPP3CB, PPP3R1 and PPPM1A/B/D/E/G are widely expressed by many types of retinal neurons and are dynamically expressed by MG and MGPCs in retinas during the process of reprogramming. We find that inhibition of DUSP1/6 and PP2C phosphatases enhances the formation of proliferating MGPCs in damaged retinas and in retinas treated with insulin and FGF2 in the absence of damage. By contrast, inhibition of PP2B phosphatases suppressed the formation of proliferating MGPCs, but increased numbers of proliferating MGPCs in undamaged retinas treated with insulin and FGF2. In damaged retinas, inhibition of DUSP1/6 increased levels of pERK1/2 and cFos in MG whereas inhibition of PP2B's decreased levels of pStat3 and pS6 in MG. Analyses of scRNA-seq libraries identified numerous differentially activated gene modules in MG in damaged retinas versus MG in retinas treated with insulin+FGF2 suggesting significant differences in kinase-dependent signaling pathways that converge on the formation of MGPCs. Inhibition of phosphatases had no significant effects upon numbers of dying cells in damaged retinas. We conclude that the activity of different protein phosphatases acting through retinal neurons and MG “fine-tune” the cell signaling responses of MG in damaged retinas and during the reprogramming of MG into MGPCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.