Abstract

Antiviral heat treatment is routinely used in the bioprocessing of therapeutic proteins as a means of reducing viral load. However, in protein formulations containing sucrose this form of bioprocessing can lead to protein modifications. Using a model protein, hen egg white lysozyme, we investigated the effects of antiviral heat treatments in the presence of sucrose on protein integrity during subsequent long-term protein storage. Although heat treatment alone resulted in protein modification, subsequent medium- to long-term storage of both lyophilized and liquid samples at room temperature or above led to further protein modifications. The majority of these modifications were due to the formation of glycation and advanced glycation end products via the reaction of reducing sugars and their autoxidation products (derived from hydrolyzed sucrose) with function groups on the protein surface. These findings have implications for the improvement of therapeutic protein bioprocessing to ensure protein product quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.