Abstract
Alkanes are high-energy hydrocarbons that are foreseen as next generation biofuels. Cyanobacteria are known to naturally synthesize C15-C19 alkanes; however, the titers are too low to make this a commercially viable process. Therefore, to leverage these photosynthetic platforms for improved alkane production, here we engineered three novel isolates of Synechococcus elongatus PCC 11801, PCC 11802, and IITB6. The two gene AAR-ADO alkane biosynthesis pathway was constructed by cloning the genes for acyl-ACP reductase (aar) and aldehyde deformylating oxygenase (ado) from S. elongatus PCC 7942 under the regulation of PrbcL promoter from PCC 7942 and native promoters from PCC 11801 such as PcpcB300, PpsbAI, and PpsbAIII. The genes were separately cloned under two different promoters, creating a library of the engineered strains. The results indicated that the engineered strains of novel S. elongatus isolates produced significantly higher amounts of alkanes than the model strain PCC 7942. The highest alkane yield achieved was 4.1 mg/gDCW in BG-11, while the highest titer was 31.5 mg/L in 5X BG-11, with an engineered IITB6 strain (PcpcB300:aar:TrrnB::PrbcL:ado:TLac). Overall, the study highlights the potential of newly isolated S. elongatus strains as efficient alkane production platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.