Abstract

The transfer of a foreign genome into a bacterium by means of phage infection is a very efficient but poorly understood process. To analyse the mechanism of phage DNA transfer at a molecular level, we have reconstituted FhuA, the receptor for phage T5 in the outer membrane of Escherichia coli, into unilamellar vesicles made of natural phospholipids. Cryoelectron microscopy studies showed that the binding of the phage to FhuA triggered the transfer of its double-stranded DNA (121000 bp) into the proteoliposomes. DNA was entrapped within vesicles with a diameter ranging from 70 to 150 nm. The DNA appeared to be densely packed, but its presence did not alter the morphology of the liposomes, suggesting no DNA-lipid interactions. These liposomes represent an attractive model system for studying the mechanisms of DNA transport and condensation. They may also serve as alternative vehicles for the transfer of foreign genes into eukaryotic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.