Abstract

Speciation of sexually reproducing organisms requires reproductive barriers. Prokaryotes reproduce asexually butoften exchange DNA by lateral gene transfer mechanisms and recombination [1], yet distinct lineages are still observed. Thus, barriers to gene flow such as geographic isolation, genetic incompatibility or a physiological inability to transfer DNA represent potential underlying mechanisms behind preferred exchange groups observed in prokaryotes [2-6]. In Bacteria, experimental evidence showed that sequence divergence impedes homologous recombination between bacterial species [7-11]. Here we study interspecies gene exchange in halophilic archaea that possess a parasexual mechanism of genetic exchange that is functional between species [12, 13]. In this process, cells fuse forming a diploid state containing the full genetic repertoire of both parental cells, which facilitates genetic exchange and recombination. Later, cells separate, occasionally resulting in hybrids of the parental strains [14]. We show high recombination frequencies between Haloferax volcanii and Haloferax mediterranei, two species that have an average nucleotide sequence identity of 86.6%. Whole genome sequencing of Haloferax interspecies hybrids revealed the exchange of chromosomal fragments ranging from 310Kb to 530Kb. These results show that recombination barriers may be more permissive in halophilic archaea than they are in bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.