Abstract

Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a dual-specificity phosphatase that is involved in the regulation of cell survival, differentiation and apoptosis through inactivating MAPKs by dephosphorylation. Here, we provide evidence for a role of MKP-1 in the glutamate-induced cell death of HT22 hippocampal cells and primary mouse cortical neurons. We suggest that, during glutamate-induced oxidative stress, protein kinase C (PKC) delta becomes activated and induces sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) through a mechanism that involves degradation of MKP-1. Glutamate-induced activation of ERK1/2 was blocked by inhibition of PKCdelta, confirming that ERK1/2 is regulated by PKCdelta. Prolonged exposure to glutamate caused reduction in the protein level of MKP-1, which correlated with the sustained activation of ERK1/2. Furthermore, knockdown of endogenous MKP-1 by small interfering (si)RNA resulted in pronounced enhancement of ERK1/2 phosphorylation accompanied by increased cytotoxicity under glutamate exposure. In glutamate-treated cells, MKP-1 was polyubiquitylated and proteasome inhibitors markedly blocked the degradation of MKP-1. Moreover, inhibition of glutamate-induced PKCdelta activation suppressed the downregulation and ubiquitylation of MKP-1. Taken together, these results demonstrate that activation of PKCdelta triggers degradation of MKP-1 through the ubiquitin-proteasome pathway, thereby contributing to persistent activation of ERK1/2 under glutamate-induced oxidative toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call