Abstract
Numerous kinases and phosphatases are most likely implicated in sperm motility initiation and maintenance. Data on these signaling molecules were mostly obtained from studies conducted on in vitro demembranated-reactivated sperm models but are not necessarily representative of the in vivo situation. We therefore investigated the effect of a variety of cell-permeable chemicals, mostly kinase inhibitors, on the motility initiation and maintenance of intact sea urchin spermatozoa. Among the 20 substances tested, the protein kinase C (PKC) inhibitor chelerythrine was the most potent, arresting motility at concentrations starting from 1.5-2 mumol l(-1). Motility was also inhibited by two other PKC inhibitors as well as staurosporine. Furthermore, these inhibitors prevented the motility-associated increase in phosphorylation of at least four PKC substrates. These phospho-PKC target proteins, as assessed with an antibody specific to phosphorylated motifs of PKC substrates, were found to be associated with the flagellum, either in the Triton X-100 soluble portion or the axoneme (Triton X-100 insoluble). A phosphorylated PKC-like enzyme was also detected by immunoblotting in the flagellum, as well as a significant 50 kDa PKC cleavage product. Taken together, the data strongly indicate for the first time that, in vivo, which means on intact spermatozoa, PKC is a key signaling mediator associated with the maintenance of sea urchin sperm motility.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have