Abstract

Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn induces dopaminergic neuronal cell death remains unclear. In the present study, we sought to investigate the key downstream apoptotic cell signaling events that contribute to Mn-induced cell death in mesencephalic dopaminergic neuronal (N27) cells. Mn exposure induced a dose-dependent increase in neuronal cell death in N27 cells. The cell death was accompanied by sequential activation of mitochondrial-dependent proapoptotic events, including cytochrome c release, caspase-3 activation, and DNA fragmentation, but not caspase-8 activation, indicating that the mitochondrial-dependent apoptotic cascade primarily triggers Mn-induced apoptosis. Notably, Mn treatment proteolytically activated protein kinase Cdelta (PKCdelta), a member of a novel class of protein kinase C. The caspase-3 specific inhibitor benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK) significantly blocked PKCdelta cleavage and its kinase activity, indicating that caspase-3 mediates the proteolytic activation. Cotreatment with the PKCdelta inhibitor rottlerin or the caspase-3 inhibitor Z-DEVD-FMK almost completely blocked Mn-induced DNA fragmentation. Additionally, N27 cells expressing a catalytically inactive PKCdelta(K376R) protein (PKCdelta dominant negative mutant) or a caspase cleavage resistant PKCdelta(D327A) protein (PKCdelta cleavage resistant mutant) were found to be resistant to Mn-induced apoptosis. To further establish the proapoptotic role of PKCdelta, RNA interference-mediated gene knockdown was performed. Small interfering RNA suppression of PKCdelta expression protected N27 cells from Mn-induced apoptotic cell death. Collectively, these results suggest that caspase-3-dependent proteolytic activation of PKCdelta plays a key role in Mn-induced apoptotic cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.