Abstract
While there is accumulating evidence that mitogen-activated protein kinase/Erk and protein kinase C (PKC) signaling inhibits premature differentiation of granulosa cells in hen prehierarchal follicles, it has only recently been established that these signaling pathways play an important facilitory role in promoting steroidogenesis in differentiated granulosa cells from preovulatory follicles. The present studies were conducted with differentiated granulosa cells to establish the ability of LH to initiate PKC activity, and the subsequent requirement for PKC activity in promoting the ErbB/Erk signaling cascade that ultimately facilitates LH-induced progesterone production. Incubation of differentiated granulosa cells with LH increases PKC activity within 15 min, and latently promotes Erk phosphorylation (P-Erk) by 180 min. Inhibition of PKC activity with GF109203X attenuates LH- and 8-bromo-cAMP (8-br-cAMP)-induced P-Erk, but not P-Erk promoted by an epidermal growth factor (EGF) family ligand (e.g., transforming growth factor alpha). Importantly, inhibition of PKC activity also blocks the LH-induced increase in the autocrine expression of mRNA encoding the EGF family ligands, such as EGF, amphiregulin, and betacellulin. Furthermore, inhibition of EGF ligand shedding at the level of the cell membrane using the matrix metalloprotease activity inhibitor, GM6001, prevents both LH- and 8-br-cAMP-induced P-Erk and progesterone production. These findings provide evidence for a facilitory role of PKC and ErbB/Erk signaling in LH-induced progesterone production, place the requirement for PKC activation upstream of ErbB/Erk activity, and demonstrate for the first time in a non-mammalian vertebrate the requirement for PKC activity in LH-induced expression of EGF family ligands in granulosa cells.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have