Abstract

Diabetes mellitus (DM) and high glucose (HG) are known to reduce the bioavailability of nitric oxide (NO) by modulating endothelial nitric-oxide synthase (eNOS) activity. eNOS is regulated by several mechanisms including its interaction with heat shock protein (Hsp) 90. We previously discovered that DM in vivo and HG in vitro induced the translocation of Hsp90alpha to the outside of aortic endothelial cells. In this report we tested the hypothesis that translocation of Hsp90alpha is responsible for the decline in NO production observed in HG-treated cells. We found that HG increased phosphorylation of Hsp90alpha in a cAMP-dependent protein kinase A-dependent manner, and that this event was required for translocation of Hsp90alpha in porcine aortic endothelial cells. Furthermore, preventing translocation of Hsp90alpha protected from the HG-induced decline in eNOS.Hsp90alpha complex and NO production. Notably, DM increased phosphorylation of Hsp90alpha and reduced its association with eNOS in the aortic endothelium of diabetic rats. These studies suggest that translocation of Hsp90alpha is a novel mechanism by which HG and DM impair eNOS activity and thereby reduce NO production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.