Abstract
Chlamydia pneumoniae is an obligate intracellular pathogen that causes both acute and chronic human disease. Several in vitro models of chlamydial persistence have been established to mimic chlamydial persistence in vivo. We determined the expression patterns of 52 C. pneumoniae proteins, representing nine functional subgroups, from the gamma interferon (IFN-gamma) treatment (primarily tryptophan limitation) and iron limitation (IL) models of persistence compared to those following heat shock (HS) at 42 degrees C. Protein expression patterns of C. pneumoniae persistence indicates a strong stress component, as evidenced by the upregulation of proteins involved in protein folding, assembly, and modification. However, it is clearly more than just a stress response. In IFN persistence, but not IL or HS, amino acid and/or nucleotide biosynthesis proteins were found to be significantly upregulated. In contrast, proteins involved in the biosynthesis of cofactors, cellular processes, energy metabolism, transcription, and translation showed an increased in expression in only the IL model of persistence. These data represent the most extensive protein expression study of C. pneumoniae comparing the chlamydial heat shock stress response to two models of persistence and identifying the common and unique protein level responses during persistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.