Abstract

Protein cryopreservation is important for the long-term storage of unstable proteins. Recently, we found that N-acetylglucosaminyltransferase-V (GnT-V) can be cryopreserved in a deep freezer without temperature control using a dilute binary aqueous solution of 3-(1-(2-(2-methoxyethoxy)ethyl)imidazol-3-io)butane-1-carboxylate (OE2imC3C) [10 wt %, mole fraction of solute (x) = 7.75 × 10-3], an artificial zwitterion. However, it is unclear which solvent properties are required in these media to preserve unstable proteins, such as GnT-V. In this study, we investigated the melting phenomena and solution structure of dilute binary aqueous OE2imC3C solutions [x = 0-2.96 × 10-2 (0-30 wt %)] using differential scanning calorimetry (DSC) and Raman and Fourier transform infrared (FTIR) spectroscopies combined with molecular dynamics (MD) simulation to compare the cryoprotectant ability of OE2imC3C with two general cryoprotectants (CPAs), glycerol and dimethyl sulfoxide. DSC results indicated that aqueous OE2imC3C solutions can be melted at lower temperatures with less energy than the control CPA solution, with increasing x, primarily due to OE2imC3C having a higher content of unfrozen water molecules. Moreover, Raman and FTIR results showed that the high content of unfrozen water molecules in aqueous OE2imC3C solutions was due to the hydration around the ionic parts (the COO- group and imidazolium ring) and the OCH2CH2O segment. In addition, the MD simulation results showed that there were fewer structured water molecules around the OCH2CH2O segment than the hydration water molecules around the ionic parts. These solvent properties suggest that dilute aqueous OE2imC3C solutions are effective in preventing freezing, even in a deep freezer. Therefore, this medium has the potential to act as a novel cryoprotectant for proteins in biotechnology and biomedical fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.