Abstract

Activity cliffs (ACs) are pairs of structurally similar molecules with significantly different affinities for a biotarget, posing a challenge in computer-assisted drug discovery. This study focuses on protein kinases, significant therapeutic targets, with some exhibiting ACs while others do not despite numerous inhibitors. The hypothesis that the presence of ACs is dependent on the target protein and its complete structural context is explored. Machine learning models were developed to link protein properties to ACs, revealing specific tripeptide sequences and overall protein properties as critical factors in ACs occurrence. The study highlights the importance of considering the entire protein matrix rather than just the binding site in understanding ACs. This research provides valuable insights for drug discovery and design, paving the way for addressing ACs-related challenges in modern computational approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.