Abstract

Membrane bound protein bodies (aleurone grains) are thought to be the main subcellular location of protein and mineral storage in seeds. In addition to structurally homogeneous proteinaceous matrix, protein bodies may contain protein crystalloids, electron–dense globoid crystals, electron–transparent soft globoids, and crystals of calcium oxalate. Protein crystalloids vary in shape, size and number. For example, cotyledon mesophyll cell protein bodies in the Cucurbitaceae generally contain protein crystalloids whereas those of Compositae and Cruciferae do not. Globoid crystals, which are rich in phytin, vary greatly in size and number per protein body. Some species have numerous small globoid crystals per protein body whereas others have one or two large globoid crystals per protein body. Phosphorus and various cations (K, Mg, Ca, Fe, Ba, Mn) located in globoid crystals can be studied with an energy dispersive X–ray (EDX) analysis system mounted on a transmission electron microscope. In some cases, cations such as Ca, Mn and Fe are specifically localized in globoid crystals of certain tissues or embryo regions. Further investigations may allow elemental composition of globoid crystals to be used in studies of systematics. Biref–ringent crystals, sometimes in the form of single large crystals but frequently in the form of druses, are present in protein bodies of some species. At least some endosperm protein bodies of all Umbelliferous species examined contain druse crystals. While seed protein bodies of relatively few species have been studied with electron microscopy, there are indications that protein bodies could be a useful character for studies in plant systematics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call