Abstract

We investigate theoretically the behavior of proteins as well as other large macromolecules which are incorporated into amphiphilic monolayers at the air-water interface. We assume the monolayer to be in the coexistence region of the ``main'' transition, where domains of the liquid condensed phase coexist with the liquid expanded background. Using a simple mean-field free energy accounting for the interactions between proteins and amphiphilic molecules, we obtain the spatial protein distribution with the following characteristics. When the proteins preferentially interact with either the liquid condensed or liquid expanded domains, they will be dissolved in the respective phase. When the proteins are energetically rather indifferent to the density of the amphiphiles, they will be localized at the line boundary between the (two-dimensional) liquid expanded and condensed phases. In between these two limiting cases, a delocalization transition of the proteins takes place. This transition is accessible by changing the temperature or the amount of incorporated protein. These findings are in agreement with recent fluorescence microscopy experiments. Our results also apply to lipid multicomponent membranes showing coexistence of distinct fluid phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.