Abstract

The controlled adsorption of proteins to well-defined monolayers is critical to advances in sensor and nanotechnology applications where selective adsorption of targeted species is of interest. In the studies reported here, we developed vibrational spectroscopic methods to gain molecular insight into the effect of single-site versus multiple-site binding of proteins to metal-chelating monolayers at an air-water interface. Analysis of real-time planar array infrared reflection-absorption spectra revealed that a Cu(II)-chelated DSIDA lipid monolayer (Cu(2+)-DSIDA) was readily disrupted by adsorption of myoglobin as demonstrated by a blue shift of 1.7 cm(-1) in the v(as)(CH(2)) stretching mode and a reduced peak intensity over a period of 5 h. However, a Zn(II)-chelated monolayer was not affected by the adsorption of either protein, suggesting that multisite binding of protein on the Cu(2+)-DSIDA results in monolayer disruption. Further studies demonstrated that in film form, adsorption of myoglobin to the Cu(2+)-DSIDA perturbed the secondary structures of myoglobin, especially the alpha-helical, random structure, and extended structures. However, no distinct change was observed during adsorption of lysozyme. These results demonstrate the utility of these methods for monitoring the molecular rearrangement of both metal-charged lipid monolayers and proteins that occur during adsorption of a protein with a strong affinity for the monolayer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.