Abstract
The modulation of biological interactions with artificial surfaces is a vital aspect of biomaterials research. Serum protein adsorption onto photoreactive hyaluronic acid (Hyal-N(3)) and its sulfated derivative (HyalS-N(3)) was analyzed to determine extent of protein interaction and protein conformation as well as subsequent cell adhesion. There were no significant (p < 0.01) differences in the amount of protein adsorbed to the two polymers; however, proteins were found to be more loosely bound on HyalS-N(3) compared with Hyal-N(3). Fibronectin was adsorbed onto HyalS-N(3) in such an orientation as to allow the availability of the cell binding region, while there was more restricted access to this region on fibronectin adsorbed onto Hyal-N(3). This was confirmed by reduced cell adhesion on fibronectin precoated Hyal-N(3) compared with fibronectin precoated HyalS-N(3). Minimal cell adhesion was observed on albumin and serum precoated Hyal-N(3). The quartz crystal microbalance confirmed that specific cell-surface interactions were experienced by cells interacting with the fibronectin precoated polymers and serum precoated HyalS-N(3).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have