Abstract

BackgroundFatty liver is a high incidence of perinatal disease in dairy cows caused by negative energy balance, which seriously threatens the postpartum health and milk production. It has been reported that lysine acetylation plays an important role in substance and energy metabolism. Predictably, most metabolic processes in the liver, as a vital metabolic organ, are subjected to acetylation. Comparative acetylome study were used to quantify the hepatic tissues from the severe fatty liver group and normal group. Combined with bioinformatics analysis, this study provides new insights for the role of acetylation modification in fatty liver disease of dairy cows.ResultsWe identified 1841 differential acetylation sites on 665 proteins. Among of them, 1072 sites on 393 proteins were quantified. Functional enrichment analysis shows that higher acetylated proteins are significantly enriched in energy metabolic pathways, while lower acetylated proteins are significantly enriched in pathways related to immune response, such as drug metabolism and cancer. Among significantly acetylated proteins, many mitochondrial proteins were identified to be interacting with multiple proteins and involving in lipid metabolism. Furthermore, this study identified potential important proteins, such as HADHA, ACAT1, and EHHADH, which may be important regulatory factors through modification of acetylation in the development of fatty liver disease in dairy cows and possible therapeutic targets for NAFLD in human beings.ConclusionThis study provided a comprehensive acetylome profile of fatty liver of dairy cows, and revealed important biological pathways associated with protein acetylation occurred in mitochondria, which were involved in the regulation of the pathogenesis of fatty liver disease. Furthermore, potential important proteins, such as HADHA, ACAT1, EHHADH, were predicted to be essential regulators during the pathogenesis of fatty liver disease. The work would contribute to the understanding the pathogenesis of NAFLD, and inspire in the development of new therapeutic strategies for NAFLD.

Highlights

  • Fatty liver is a high incidence of perinatal disease in dairy cows caused by negative energy balance, which seriously threatens the postpartum health and milk production

  • The fatty liver disease in dairy cows is a typical type of nonalcoholic fatty liver disease (NAFLD), mainly caused by obesity and stress response

  • This study reveals a comprehensive acetylome profiling of fatty liver disease in dairy cattle and identifies potential biomarkers based on protein acetylation level

Read more

Summary

Introduction

Fatty liver is a high incidence of perinatal disease in dairy cows caused by negative energy balance, which seriously threatens the postpartum health and milk production. This study provides new insights for the role of acetylation modification in fatty liver disease of dairy cows. More than 60% of dairy cows develop fatty liver during the transition period from dry milk to lactation due to negative energy imbalance [1], resulting in weakened liver function and decreased milk production [2]. The objective of the present study is to investigate the possible role of protein acetylation in liver function during the transition period from dry milk to lactation in dairy cattle

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call