Abstract

Enhanced photocatalytic activity of liquid flame spray (LFS) deposited TiO2 nanoparticles under tribological wear was investigated on metal injection molded (MIM) stainless steel substrates having micropillars as the load carrying support. A combination of LFS with MIM microtextures on the surface is a simple and cost-efficient way for manufacturing efficient photocatalytic substrates. Computer controlled microworking technique in combination with MIM was used to produce stainless steel micropillar surfaces that were functionalized by the LFS deposition of photocatalytically active TiO2 nanoparticles. The photocatalytic activity was measured in gas-phase with an in-house built photoreactor. Our results show that micropillars with controlled spacing we can control the surface area and increased photocatalytic activity of the micropillar substrate was observed compared to flat reference. The wear test confirmed that micropillars not only increase the surface area but they also provide protective support against wear whereas flat reference substrate lost the photocatalytic activity completely during wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.