Abstract
Mucins have long been regarded to play a role as a barrier to prevent mucosal infections; however, some studies report that overexpression of mucins induces obstruction and inflammation of airways. We investigated whether the secretion of overexpressed mucin, mucin5ac (MUC5AC), could improve protection against pathogens. To examine the possible roles of mucin hypersecretion in augmenting host defense against disease-promoting muco-obstructive lung disease, a mouse model that overexpressed MUC5AC was generated. We had previously proved that murine gammaherpesvirus-68 (MHV-68)infection could induce emphysema in mice, which later developed into combined pulmonary fibrosis and emphysema (CPFE). We further explored whether increased MUC5AC secretion could provide benefits against MHV-68 induced fibrosis. We initially developed a pcDNA3.1-MUC5AC mouse model. Next, the experimental mice were randomly divided into five groups: normal control, pcDNA3.1 control, pcDNA3.1-MUC5AC, CPFE, and pcDNA3.1- MUC5AC + CPFE. Morphometric analysis of each group was performed by hematoxylin and eosin staining and Masson trichrome staining. MUC5AC levels in lung tissues were analyzed by immunohistochemical staining, real-time polymerase chain reaction, and Western blot analysis. The airway inflammation was determined by differential cell counts of bronchoalveolar lavage fluid (BALF) and measurement of cytokines and chemokines in BALF by enzyme-linked immunosorbent assay. MUC5AC hypersecretion alone was not sufficient to drive goblet cell metaplasia to induce obvious mucus plugging and airway inflammation. However, MUC5AC overexpression served as a protective barrier against MHV-68 virus infection in vivo. Infectivity of MHV-68 was decreased in the pcDNA3.1-MUC5AC + CPFE group compared with that in CPFE group. Meanwhile, a reduction of MHV-68 virus attenuated the expressions of chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin-13 (IL-13), and transforming growth factor-β1 (TGF-β1), and weakened airway inflammation and fibrosis in the pcDNA3.1-MUC5AC + CPFE group. Overexpression of MUC5AC appears to exhibit a protective role against MHV-68 infection in mice with emphysema that subsequently developed into CPFE and to further decrease airway inflammation and fibrosis induced by MHV-68 by decreasing the expressions of CCL2, CXCL5, IL-13, and TGF-β1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have