Abstract

Many studies have demonstrated the key role of lysosomes in ischemic cell death in the brain and have led to the "lysosomocentric" hypothesis. In this hypothesis, the release of cathepsin-B due to a change of lysosomal membrane permeabilization (LMP) or rupture is critical, and this can be prevented by its inhibitors CA074 and CA074-me. However, the role of CA074-me in neuronal death and its effect on the change of lysosomal membrane integrity after global cerebral ischemia/reperfusion (I/R) injury is not clear, so we investigated this here. Rat hippocampal CA1 neuronal death was evaluated after 20-min global cerebral I/R injury. CA074-me (1 μg, 10 μg) were given intracerebroventricularly 1h before ischemia or 1h post reperfusion. The changes of heat shock protein 70 (Hsp70), cathepsin-B, lysosomal-associated membrane protein 1 (LAMP-1), receptor-interacting protein 3 (RIP3), and the change of lysosomal pH were evaluated respectively. Hippocampal CA1 neuronal programmed necrosis induced by global cerebral I/R injury was prevented by CA074-me both pre-treatment and post-treatment. Diffuse cytoplasmic cathepsin-B and LAMP-1 immunostaining synchronized with the pyknotic nuclear changes 2 days post reperfusion, and a rise of lysosomal pH with the leakage of DND-153, a dye of lysosomes, after oxygen-glucose deprivation (OGD) was detected. Both of these changes demonstrated the rupture of lysosomal membrane and the leakage of cathepsin-B, and this was strongly inhibited by CA074-me pre-treatment. The overexpression and nuclear translocation of RIP3 and the reduction of NAD(+) level after I/R injury were also inhibited, while the upregulation of Hsp70 was strengthened by CA074-me pre-treatment. Delayed fulminant leakage of cathepsin-B due to lysosomal rupture is a critical harmful factor in neuronal programmed necrosis induced by 20-min global I/R injury. In addition to being an inhibitor of cathepsin-B, CA074-me may have an indirect neuroprotective effect by maintaining lysosomal membrane integrity and protecting against lysosomal rupture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.