Abstract
Circular RNAs (circRNAs) are novel class of stable regulatory RNAs abundantly expressed in the brain. However, their role in fear extinction (EXT) memory remains largely unexplored. To investigate the mechanisms of Circular Special AT-rich Sequence Binding Protein 2 (circSatb2) in EXT memory, we constructed a lentivirus overexpressing circSatb2 and injected it into the infralimbic prefrontal cortex (ILPFC) of the mouse brain. Following extinction training and subsequent testing, we observed an essential role of circSatb2 in this dynamic process. RNA sequencing (RNA-seq) and bioinformatics analyses revealed that circSatb2 enhances the transcription of Roundabout Guidance Receptor 3 (Robo3), a key gene implicated in axon guidance and synaptic plasticity, which was validated by RT-qPCR. Neuronal morphology was assessed using confocal microscopy to determine changes in dendritic spine density. Our results demonstrated that circSatb2 significantly enhances Robo3 transcription, leading to increased dendritic spine formation and improved synaptic plasticity. In conclusion, circSatb2 promotes the formation of EXT memory by upregulating Robo3 transcription and enhancing synaptic plasticity. These findings position circSatb2 as a potential therapeutic target for disorders associated with memory impairment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.