Abstract

Thrombosis and inflammation are major obstacles to successful pig-to-human solid organ xenotransplantation. A potential solution is genetic modification of the donor pig to overexpress molecules such as the endothelial protein C receptor (EPCR), which has anticoagulant, anti-inflammatory and cytoprotective signaling properties. Transgenic mice expressing human EPCR (hEPCR) were generated and characterized to test this approach. hEPCR was expressed widely and its compatibility with the mouse protein C pathway was evident from the anticoagulant phenotype of the transgenic mice, which exhibited a prolonged tail bleeding time and resistance to collagen-induced thrombosis. hEPCR mice were protected in a model of warm renal ischemia reperfusion injury compared to wild type (WT) littermates (mean serum creatinine 39.0 ± 2.3 μmol/L vs. 78.5 ± 10.0 μmol/L, p < 0.05; mean injury score 31 ± 7% vs. 56 ± 5%, p < 0.05). Heterotopic cardiac xenografts from hEPCR mice showed a small but significant prolongation of survival in C6-deficient PVG rat recipients compared to WT grafts (median graft survival 6 vs. 5 days, p < 0.05), with less hemorrhage and edema in rejected transgenic grafts. These data indicate that it is possible to overexpress EPCR at a sufficient level to provide protection against transplant-related thrombotic and inflammatory injury, without detrimental effects in the donor animal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call