Abstract

Accumulating evidence supports that Sirtuin 6 (SIRT6) may play a vital role in the pathogenesis of spinal cord injury. The current study was designed to investigate the specific effects of SIRT6 on spinal cord injury (SCI). HE and Nissl staining were performed for pathological analysis in SCI rats. SIRT6 expression was detected by RT-qPCR. CCK8 assay was applied for the detection of cell viability of LPS-injured PC12 cells. TNF-a, IL-1β, IL-6, MCP-1 levels and ROS, MPO, SOD levels were assessed to evaluate inflammation and oxidative stress in spinal cord injury. Cell apoptosis were evaluated by morphological examination using AO/EB fluorescent staining methods and key proteins related to apoptosis were explored via western blot. HE staining revealed increased cavity involving the dorsal white matter and central gray matter, and Nissl staining discovered the loss of motor neurons in the ventral horn in SCI rats. SIRT6 had lower expression in SCI rats. Lipopolysaccharide (LPS) exposure induced cell apoptosis and reduced the expression of SIRT6. Mechanistically, we revealed that up-regulation of SIRT6 alleviated inflammation and oxidative stress and inhibited cell apoptosis in spinal cord injury. Together, our findings indicated that SIRT6 attenuated spinal cord injury by suppressing inflammation, oxidative stress, and cell apoptosis. This study demonstrates that SIRT6 may represent a protective effect against spinal cord injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call