Abstract

Reactive oxygen species produced by oxidative stress may participate in the apoptotic death of dopamine neurons distinctive of Parkinson's disease. Resveratrol, a red wine extract, and quercetin, found mainly in green tea, are two natural polyphenols, presenting antioxidant properties in a variety of cellular paradigms. The aim of this study was to evaluate the effect of resveratrol and quercetin on the apoptotic cascade induced by the administration of 1-methyl-4-phenylpyridinium ion (MPP(+)), a Parkinsonian toxin, provoking the selective degeneration of dopaminergic neurons. Our results show that a pre-treatment for 3 h with resveratrol or quercetin before MPP(+) administration could greatly reduce apoptotic neuronal PC12 death induced by MPP(+). We also demonstrated that resveratrol or quercetin modulates mRNA levels and protein expression of Bax, a pro-apoptotic gene, and Bcl-2, an anti-apoptotic gene. We then evaluated the release of cytochrome c and the nuclear translocation of the apoptosis-inducing factor (AIF). Altogether, our results indicate that resveratrol and quercetin diminish apoptotic neuronal cell death by acting on the expression of pro- and anti-apoptotic genes. These findings support the role of these natural polyphenols in preventive and/or complementary therapies for several human neurodegenerative diseases caused by oxidative stress and apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call