Abstract

Parkinson's disease is a debilitating progressive neurodegenerative disorder that results from the loss of or damage to dopaminergic cells containing neuromelanin in the substantia nigra (SN). The underlying neurodegenerative mechanism(s), however, remain elusive. Aminochrome, the precursor of neuromelanin is an endogenous substance capable of inducing selective neurotoxicity to dopaminergic neurons in SN. Nicotine, on the other hand, may offer protective effects against dopaminergic cell damage induced by various neurotoxins including MPTP and salsolinol. In this study, we sought to determine whether nicotine may also protect against aminochrome-induced toxicity in SN derived RCSN-3 cells. Exposure of RCSN-3 cells to a combination of aminochrome (50μM) and dicoumarol (50μM) for 48h induced approximately 70% cell death. Pretreatment with nicotine, dose-dependently blocked this toxicity. The effects of nicotine in turn were dose-dependently blocked by mecamylamine, a non-selective nicotinic receptor antagonist. These results suggest involvement of nicotinic receptors in protective effects of nicotine against aminochrome-induced toxicity and provide further evidence for possible therapeutic effects of nicotine or nicotinic agonists in Parkinson's disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call