Abstract
Mitochondrial damage is involved in the pathogenesis of osteoarthritis. Metformin, one of the most common prescriptions for patients with type 2 diabetes, can reportedly activate Sirtuin 3 (SIRT3) expression which protects mitochondria from oxidative stress. In this study, we investigated the inhibitory property of metformin on mitochondrial damage by focusing on the interleukin-1 beta (IL-1β)-stimulated osteoarthritis model by using primary murine chondrocytes. Our results demonstrated that SIRT3 was downregulated in chondrocytes under IL-1β stimulation, where its expression was positively correlated with mitochondrial damage and reactive oxygen species (ROS) production. Metformin treatment upregulated SIRT3 expression and mitigated loss of cell viability and decreased the generation of mitochondria-induced ROS in chondrocytes stimulated with IL-1β. Metformin also attenuated IL-1β-induced expressions of catabolic genes such as matrix metalloproteinase-3 (MMP3) and MMP13 and enhanced the anabolic indicator Collagen Ⅱ. These effects were mediated by phosphatase and tensin homolog (PTEN)-induced putative kinase protein 1 (PINK1)/Parkin-dependent mitophagy and the autophagic elimination of damaged mitochondria. Further, the SIRT3 inhibitor 3-TYP effectively inhibited the initiation of mitophagy, as decreased expression of PINK1 and Parkin, decreased the LC3II/LC3I, enhanced the expression of MMP3 and MMP13, and decreased the expression of Collagen Ⅱ. Overall, our findings provide evidence that metformin suppresses IL-1β-induced oxidative and osteoarthritis-like inflammatory changes by enhancing the SIRT3/PINK1/Parkin signaling pathway, thereby indicating metformin's potential in prevention and treatment of osteoarthritic joint disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.