Abstract

Arsenic trioxide (ATO) has been known as common environmental pollution, and is deemed to a threat to global public health. Curcumin (Cur) is a phytoconstituent, which has been demonstrated to have antioxidant effects. In the current experiment, we investigated the efficacy of Cur against ATO-induced kidney injury and explored the potential molecular mechanisms that have not yet been fully elucidated in ducks. The results showed that treatment with Cur attenuated ATO-induced body weight loss, reduced the content of ATO in the kidney, and improved ATO-induced kidney pathological damage. Cur also remarkably alleviated the ascent of ATO-induced MDA level and activated the Nrf2 pathway. Using the TEM, we found Cur relieved mitochondrial swelling, autolysosomes generating and nuclear damage. Simultaneously, Cur was found that it not only significantly reduced autophagy-related mRNA and protein levels (mTOR, LC3-Ⅰ, LC3-Ⅱ, Atg-5, Beclin1, Pink1 and Parkin) and but also decreased apoptosis-related mRNA and protein expression levels (cleaved caspase-3, Cytc, p53 and Bax). Furthermore, through nontargeted metabolomics analysis, we observed that lipid metabolism balance was disordered by ATO exposure, while Cur administration alleviated the disturbance of lipid metabolism. These results showed ATO could induce autophagy and apoptosis by overproducing ROS in the kidney of ducks, and Cur might relieve excessive autophagy, apoptosis and disturbance of lipid metabolism by regulating oxidative stress. Collectively, our findings explicate the potential therapeutic value of Cur as a new strategy to a variety of disorders caused by ATO exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.