Abstract
Nitric oxide (NO) is a key molecule involved in many physiological processes. To characterize its roles in the tolerance of Arabidopsis thaliana to ultraviolet-B (UV-B), we investigated the effect of a reduced endogenous NO level on oxidative damage to wild-type and mutant (Atnoa1) plants. Under irradiation, hydrogen peroxide was accumulated more in mutant leaves than in the wild type. However, the amounts of UV-B-absorbing compounds (flavonoids and anthocyanin) and the activities of two antioxidant enzymes—catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11)—were lower in leaves of the former. Supplementing with sodium nitroprusside, an NO donor, could alleviate the oxidative damage to mutant leaves by increasing flavonoid and anthocyanin contents and enzyme activities. In comparison, $${\text{N}}^{\text{ $ \omega $ }} - {\text{nitro}} - l - {\text{arginine}}$$ , an inhibitor of nitric oxide synthase, had the opposite effects on oxidation resistance in wild-type leaves. All these results suggest that nitric oxide acts as a signal for an active oxygen-scavenging system that protects plants from oxidative stress induced by UV-B irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.